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By analogy with Lagrange interpolation, the fundamental alternating
polynomials are introduced. The interlacing property of the zeros of these
polynomials corresponding to the Chebyshev extrema nodes is established. The
behavior of the corresponding Lebesgue function is studied. In this study our main
tool is a relationship between this function and the corresponding Lebesgue
function induced by the interpolation. Taking advantage of our previous result con­
cerning interpolation, a new estimate for the norm of the alternating operator is
obtained. This result gives an affirmative answer to a question posed by Cheney
and Rivlin. © 1988 Academic Press. Inc.

1. INTRODUCTION

Let X={xk}k:b, -l:::;xn+ l <xn· .. <XI <xo :::; 1 be a set of n+2
distinct points in [-1, 1], and denote by C[ -1, 1] the Banach space of
continuous functions on [-1, 1] equipped with the uniform norm. To
eachj(x)EC[ -1,1] there corresponds a unique interpolation polynomial

where

n+1

Ln+I(X;x)= L j(xd1k(X;x),
k~O

n+I

Ik(X; x) = n (x - Xi)/(Xk - Xi)'
i=O
i .. k

(1)

L n + I (X) may be interpreted as a projection of C[ -I, 1] onto the subspace
1tn + I consisting of all polynomials of degree :::; n + 1. In [3] the author
introduced the (generalized) alternating polynomials An(X; x) which are
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related to the interpolation polynomials induced by the same set of nodes
in the following way:

A (X' )=L (X' )_f[xO,xl, ...,Xn+ l ] T ()n , X n+ I , X 2n n + 1 X , (2)

where f[xo, XI' ... , X n + 1] is the divided difference of f(x) on the point set X
and TAx) = cos(n arc cos x). Relation (2) shows that the An-polynomials
may be derived from the corresponding interpolating polynomials by
applying one step of the Lanczos economization technique. An(X) may also
be viewed as a projection of C[ -1, 1] onto nn'

Of special importance in applications are sets of nodes satisfying

k = 0, 1, ..., n + 1. (3)

For such sets the An-polynomials coincide with the particular case of the
next-to-interpolatory polynomials in the sense of Motzkin and Sharma [8]
(see [3] for details).

Let An-polynomial be represented in the "Lagrangian" form:

n+1

An(X; x) = L f(x k)adX; x).
k~O

(4)

Then by analogy with the interpolation, it is natural to call ak(X; x) the
fundamental alternating polynomials. Relation (2) yields

(5)

where w(x) = n;:d (x - x k ). The arrangement of the roots of the fun­
damental polynomials ak(X; x) is of great importance in our study. It can
be easily seen that if, in addition to (3), the nodes {xk } Z~b satisfy
Iw'(xdl > 2 -n, k = 0, 1, ..., n + 1, then each ak(X; x), k = 1, 2, ..., n, has n - 1
distinct real roots on (xn + I' x o) and hence an additional root outside
[xn + I' xo]. Moreover, all the roots of ao(X; x) and an+ I(X; x) lie in the
interval (x n + I' xo). In order to obtain additional information concerning
the location of the roots of ak(X; x), we have to restrict ourselves to specific
sets of nodes.

In the present paper we deal with the Chebyshev extrema nodes
X=U={cos[kn/(n+l)]}Z~b. In Section 2, two lemmas concerning the
fundamental polynomials ak( U; x) are proved. In Lemma 1, the interlacing
property of the roots of the fundamental polynomials ak( U; x),
k = 0, 1, ..., n + 1, is established, while in Lemma 2 we estimate the "degree
of the orthogonality" of {ak(U;x)}Z~b with respect to the Chebyshev



CHEBYSHEV EXTREMA NODES 35

(7)

(8)

weight. Section 3 is devoted to the study of the corresponding Lebesgue
function defined by JlAU;X)=L:k~6Iak(U;x)l. Our main tool here is a
relationship between Jln( U; x) and the corresponding Lebesgue function
induced by the interpolation A.n+l(U;X)=L:k~6Ih(U;x)l. By making use
of the interlacing property of the roots of ak( U; x), k = 0, I, ..., n + I, and
taking advantage of our previous result concerning interpolation, we
obtain a new estimate for the operator norm of A n ( U). This estimate gives
an affirmative answer to a question posed by Cheney and Rivlin in [5].
The paper is concluded with an observation concerning the mean square
convergence of the A n( U; x )-polynomials. This observation serves as an
illustration of the general principle, which says that the laws of the
asymptotic distribution of nodes are not fine enough to characterize
completely the behavior of the alternating process.

2. THE FUNDAMENTAL POLYNOMIALS ak(U;x)

Let U= {'1k= cos [kn/(n + 1)]}k~6' It follows from (5) that

(-1 )k
ak(U; x) = lk( U; x) - Yk --1- Tn+I(X) (6)

n+

with Yk= 1 for k= 1, 2, ..., nand YO=Yn+l =!.
The fundamental polynomials ak ( U; x) may also be expressed in terms of

the Chebyshev polynomials

2Yk ~I
ak(U; x) =--1 L. Tm('1d Tm(x),

n+ m~O

where L:' denotes a sum whose first term is halved. By applying to (7)
the well-known ChristofTel-Darboux identity, one can easily derive the
following useful representation which is due to Eterman [6] (see also
Meinardus [7]):

(U
. ) _ Yk( -1)k[Tn(x)- '1k Tn+ I(X)]

ak ,x - .
(n+ 1)('1k-x)

We proceed now to prove the following property.

LEMMA 1. Let Ii =['1i,'1i- 1 ], j=I,2, ...,n+1. Each ak(U;x),
k = 0, 1, ..., j - 2, j + 1, ..., n + 1, has a real root r,V) on Ii' These roots are
ordered as follows:

n . < r<il < r(il < ... < r(j) <;; .< r(j) < rU ) < ... < rVl < n . (9)./; ;+ 1 ;+2 n+ 1 'oJ 0 1 ;-2 '/;-1>

where ~i= cos[(2j-l)n/(2n + 2)].
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Proof We start by verifying that the roots of ak( U; x) for k ~ j - 2 and
k?:j+ 1 are separated by the "middle" point ~i' Using (8), we get

sgn[ak ( U; ~i)] = ( _1)k sgn[T,,(~J] sgn[lJk - ~i]

= (-·1 )k+H I sgn[lJk - ~i]

=(_1)k+i +l, k=0,1, ...,j-2,

= (-1 )k+ i , k = j + 1, ..., n + 1. (10)

Next, by virtue of (6), sgn[ak(U;'1i)]=(-1)k+J+l, j#k. and hence
rV)E(IJJ'~J) for k=j+1, ...,n+1, while rl;>E(~J,IJ,,-d for k=
0, 1, ..., j - 2. Thus to prove the lemma it suffices to show that
sgn[ak( U; rVlI)] = ( _1)k +1, k = 0, 1, ..., j - 3, j + 1, ..., n. Representation
(8) reveals

sgn[ak( U; rVlI)] = (_1)k sgn[T,,(rVlI) -11k T,,+ l(rVlI)] sgn[11k - rVll]

- ( 1)k + I [ ( (.) )] [ (.)] ( 1- - sgn T,,+I r/+ I sgn 11k-r/+1 . 1)

We have used in (11) the fact that rVL is t.he root of ak+ I ( U; x) and
hence T,,(rVL)-11k+IT"+I(rVL)=O. It remains to note that for
k =0,1, , j- 2, (-1)i- IT,,+ l(rVL) > ° and 11k - rVL > 0, while for
k=j+1, ,n+1, (-1)JT"+I(rVL»0 and 11k-rVll<O. This concludes
the proof of Lemma 1.

In the next lemma, the "degree of the orthogonality" of the fundamental
polynomials ak( U; x), k = 0, 1, ..., n + 1, with respect to the Chebyshev
weight is estimated.

LEMMA 2.

(_1)k+t+ IYkYt1t
(n + 1)2

k#l,

k=l.

(12)

Proof Upon using representation (7) and well-known properties of the
Chebyshev polynomials T,,(x), we obtain

JI 2 -1/2 2YkYt1t ~I () ()

_1(l-X) ak(U;x)at(U;x)dx=(n+lfm'=:o Tm '1k Tm 11t

(13)
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On the other hand, relation (6) reveals
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l#k,

l=k.

(14)

Combining (13) and (14) completes the proof of the lemma.

3. THE LEBESGUE FUNCTION Jin( U; X)

By analogy with the interpolation, the Lebesgue function Jin(X; x)
associated with the alternating operator An(X) is defined as

n+l

Jin(X; x) = L lak(X; x)l·
k~O

(15 )

It is known (see, e.g., [4]) that the operator norm of An(X;·), as an
operator on C[ - 1, 1], equals the sup norm of its Lebesgue function:

IIA n (X)11 = max Jin(X; x).
- I ~x~ I

(16 )

In this section we study the behavior of Jin( U; x). Our main tool is a
relationship between this function and the corresponding Lebesgue
function An + I ( U; x) induced by the interpolation. As before, we denote by
rVI the root of ak( U; x) lying on I j = [flj' flj __ I], j = 1, 2, ... , n + 1. Our atten­
tion will be restricted to the study of Jin( U; x) on the "middle" subintervals
I j,0 = [r~jll' riP]. By virtue of Lemma 1,

j- 1

Jin(U;X)= L (-IV+v+' a,,(U;X)
\' =0

n+ 1

+ L (-I)j+vav(U;X),
v =j

(17 )

On the other hand, the corresponding Lebesgue function induced by the
interpolation A.n + 1( U; x) may be written as

j-I

.A.n+1(U;x)= L (-I)j+V+ 1lv(U;x)
v=o

n + I

+ L (-1)j+vf.(U;x),
v -j

(18)
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X E 1/, o. (19 )

Combining (17), (18), and (6) we obtain, after some simplification,

( - 1)J(n + 2 - 2})
An+1(U;x)-/1n(U;x)= (n+ 1) Tn+1(x),

It follows from (19) that )on+l(U;~J)=/1n(U;~J)' }=1,2, ...,n+1.
(Moreover, if the number of nodes is even, n = 2N, then A2N + 1(U; x) coin­
cides identically with /12N( U; x) for x E / N, 0') Since, on the other hand,
IIL2N +1(U)11 =A2N +1(U;0) (see, e,g., [1]), IIA 2N(U)11 ~ IIL2N + 1(U)II,
N = 0, 1,2, ... , This inequality has been noticed by Cheney and Rivlin in
[5]. They also remark: "We don't know whether it is also true for the odd
case." The following theorem contains an affirmative answer to this
question.

THEOREM 1.

n = 0, 1,2, .... (20)

Proof We need consider only the odd case, n + 2 = 2N + 1, N = 1, 2, ....
It is known (see, e.g., [1]) that A2N(U; x) attains its maximal value in the
interval/N= [11 N' 11 N_ 1]. Therefore, we can restrict ourselves to a com­
parison of /12N _ 1( U; x) and A2N(U; x) for x E IN' The idea of the proof is to
show that for any x E IN there exists a point Z E / N such that
/12N _ 1(U; z) ~ A2N(U; x). Denote by F2N _ 1(x) the continuation of
/12N _ 1(U; x), X E IN, 0 as a polynomial on the interval/N' It is clear that
/12N _ 1(U; x) ~ F2N _ 1(x), X E / N, and hence it suffices to show for any x E IN
the existence of Z E IN (depending on x) such that F2N _ 1(z) ~ A2N(U; x),
x E / N' To this end we apply the trigonometric substitution x =
cos(8 N _ 1 + 8), 8 N - 1 = (N -1)nj2N, 0::::; 8::::; nj2N, and put if>2N-l(8) =
F2N_1(cos[8N-l + 8]), A2N(U;IN' 8) = A2N(U; cos[8N-l + 8]). By virtue
of (19) we have

( _1)N + 1 cos(2N8)
if>2N_l(8)-A 2N(U;/N,8)= 2N '

n
0::::;8::::;-. (21)

2N

(22)

Now we apply the following formula, which estimates the "degree of asym­
metry" of the Lebesgue function A2N(U; In; 8) (see [2]):

A2N ( U; / N, 2: - 8 ) - A2N( U; / N, 8)

= sin(2N8) {tan (.!!-_8) _ tan 8}.
2N 4N 2 2
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Upon comparing (22) and (21), we find that the following inequality has to
be verified:

cos(2Ne) sin(2Ne) { (n e) e} 0_..:...-..:...- - tan - - - - tan - >
2N 2N 4N 2 2'

or equivalently

H2N(e)=Cot(2Ne)-tan(4~-~)+tan~>0, 0<e<2~. (23)

Since H 2N(O) > 0 and H 2N(n/4N) = 0, it is sufficient to show that

1 1 2N ( n)
H;N(e) = (e)+ 2( n e)- sin2(2Ne) <0, eE 0'4N .

2 cos 2 - 2 cos - --
2 4N 2

But cos2(e/2»cos2(n/4N-e/2), 0<e<n/4N, and h~nce it remains to
check that

0< e <n/4N,

or, finally, that

sin(2Ne) < J2N cos(n/4N - e/2), e E (0, n/4N), N = 1, 2, ....

This last inequality follows immediately from the fact that

J2N cos(n/4N - e/2) > 1, e E (0, n/4N), N = 1, 2, ....

This completes the proof of the theorem.

Remark. For the upper bound of IIA n( U)II, the following estimate is due
to Cheney and Rivlin [5] (see also Phillips and Taylor[lO]):

(24)

Notice that this estimate follows immediately from (6). We performed some
intensive numerical calculations which indicate that when the number of
alternation points is even, max -I., x., 1 J1.n( U; x) = J1.n( U; 0), while for odd
number of points, n + 2 = 2N + 1, the Lebesgue function J1.2N _I (U; x)
attains its maximal value in the subinterval IN. o. Assuming these facts to be
true, one can conclude

IIA 2N(U)11 = IIL2N + 1(U)II,
1o< II A 2N - 1( U) II - II L 2N( U) II < 2N'

N=O, 1, ...

N= 1,2, ...

(25)

(26)
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4. CONCLUDING REMARKS

As was mentioned in the Introduction, the A n( U; x )-polynomials may be
considered as a special case of the next-to-interpolatory polynomials, which
have been introduced and studied by Motzkin and Sharma in [8,9]. In
particular, since the nodes t1k = cos [knj(n + 1)J, k = 0, 1, ..., n + 1, are
known to coincide with the roots of Tn + 2(X) - Tn(x), one can apply
Theorem 7 of [9J to obtain

}~moo (I [f(x) - A n( U; X)J2 dx =° (27)

for any f(x) E C[ -1, 1]. In the above setting, U denotes the infinite matrix
of nodes whose nth row is (t1n + I' t1n' ..., t1o). Note also that (27) may be
proved directly by applying to An( U; x) the standard Fejer technique and
making use of Lemma 2. On the other hand, it was shown in [9J that for
the matrix U, obtained from U by deleting the end points ± 1, there exists
a function f(x), continuous on [ -1, 1J, such that

(28)

This example serves as an illustration of the general principle, which says
that the laws of the asymptotic distribution of nodes are not fine enough to
characterize completely the behavior of the alternating process.
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